

Aircraft Capability Management

Randy Mumaw Michael Feary

April 18, 2017

SAE NASA Autonomy and the Next Generation Flight Deck Symposium

NASA Ames Research Center

Primary Messages

- Managing non-normals currently requires pilots to reason about poorly understood airplane systems; they won't do this well and new airplanes will make it harder
- Performance can be improved by using an automated agent to translate failures in system components to descriptions of airplane capabilities
- Automation can perform tasks that humans do poorly, and also help the flight crew get to better decisions
- As autonomous agents are developed to support these operational tasks, we need to ensure that those agents are effective team members

Explosion of Alert Messages

Qantas A380 Uncontained Engine Failure

- QF 32; Singapore to Sydney; 469 people on board
- 4 minutes after Take-off, engine no. 2 bursts, severely damaging other equipment
- 43 ECAM messages in first 60 seconds; 10 additional later

• 50 minutes to sort through the non-normal

checklists (NNCs)

"It was hard to work out a list of what had failed; it was getting to be too much to follow. So we inverted our logic: Instead of worrying about what failed, I said 'Let's look at what's working."

A380 Captain

What is a Capability?

Airplane System Components

- Hydraulic system
- Thrust Reverser
- Battery
- Air conditioning pack

Airplane Capabilities

- Range / Endurance
- Stopping Distance (on runway)
- Ability to perform a specific approach
- Ability to enter RVSM airspace
- Maneuver envelope

Airplane system components have failed

What can I do? Where can I go?

757 Bus Failure

AAL Flight #268; SEA to JFK September 22, 2008

- En route (CRZ); got several EICAS messages
- Performing STANDBY BUS OFF; initial action had them turn standby power selector to BAT (battery); they ended the checklist at that point
- A light showed that the battery was discharging but they couldn't determine how to change that situation
- They put the hot battery bus, battery bus, standby AC bus and standby DC bus all on the battery, which was no longer charging.

2 hr, 24 min later, battery power depleted, resulting in these effects (plus others)

- · Captain's displays blanked
- PA failed
- · Elevator trim systems failed
- Thrust reversers and spoilers failed to deploy automatically on landing
- Could not shut down the engines with fuel cutoff

AIR/GND SYS
STANDBY BUS OFF
AUTOPILOT DISC
AUTOTHROTTLE DISC

O. O NZ O. O
FF
OIL PRESS
OIL TEMP
O OIL OTY O
O. O VIB O. O

FHO OP

CAB ALT O RATE O
LDG ALT AUTO APO. 000

FHO OP
CL

AIR/GND SYS
STANDBY BUS OFF
AUTOPILOT DISC
AUTOTHROTTLE DISC

FUEL OTY
6. O 2. O 6. O
TOTAL FUEL 14. O KGS ×
TEMP +15c 1000

None of these effects was expected by the flight crew!!

What Airplane Capabilities were Affected?

What systems are powered by those buses?
How do those systems affect airplane capabilities?

- Range
- Landing Distance
- Ice Protection
- Communication (with cabin)
- Maneuver Envelope
- Fire Detection and Extinguishing

Explicit Alerting on Capabilities

Typically, we don't

Can I Fly?

- **-** 787
 - 449 EICAS messages (Warning, Caution, Advisory)
 - All but 19 of them reflect physical system failures/ status changes

Explicit Alerting on Capabilities

Sometimes, we do

NO AUTOLAND NO LAND 3 NAV UNABLE RNP STALL PROTECTION

The New Generation of Systems is Different

So are the pilots

Airplane System Integration

Pilot System Knowledge

- Airplanes have become more integrated—more shared resources, more interconnections—and failures can have effects that are difficult to anticipate or understand
- The volume and rate of crew alert and status messages can increase significantly for certain types of failures
- Non-normal procedure design for combinations of failures is challenging
- Air turnbacks or diversions occur due to confusion about severity of the failures, and impact on the mission

Both types of errors occur:

- Poor understanding of real problems
 - Oversensitivity to trivial changes

NASA

Managing a Non-normal (airplane system failure)

NASA

Managing a Non-normal (airplane system failure)

Three Types of Information for the Pilot

Answering Basic Questions

Status of Airplane Capabilities

- What is working/what is not?
- How can I restore what has been lost?

Operational Guidance

• Which limitations do I need to observe during the remainder of the mission?

Mission Planner

- Can I still complete the planned mission?
- If not, where else can I land?

Initial Ideas about Airplane Capabilities

Can I Take-off?

Can I reach my planned destination?

Can I land?

Envelope

Resources

Electric Power

Hydraulic Power

Pneumatic Power

Equipment Cooling

Engines (state)

Navigation

Communication

Autoflight

Envelope Protection

Stability Augmentation

Cabin/Cargo Environment

Ice Protection

Fire Detection & Extinguishing

Airspace Access

Approach Access

Landing Distance

Runway Directional Control

Additional Features:

NNC Prioritization

Time to fail (or to recover)

System synoptics (to assess configuration changes)

Mission Decision: Where Should I Land?

Mission Decision: Where Should I Land?

Mission Decision: Where Should I Land?

Lessons for Human-Autonomy Teaming

- Use autonomous agents to pull together information relevant to managing non-normals (information that humans cannot develop); e.g.,
 - changes to airplane capabilities
 - airport information, airplane compatibility
- Organize it in a way to benefit flight crew decision making
- Develop interface design requirements for an autonomous advisor and a negotiation approach so that the humans can add value

Planned Activities

- Develop a "framework/language" for communicating airplane capabilities
 - Pilot interviews and prototyping
- Develop a set of failure cases
- Develop system models to simulate system failures
- Collaborate with industry (e.g. SAA with Boeing)

